📚 Thermodynamics Formula Sheet

Physics 211 - IISER TVM | Mid-Semester Exam Preparation

Fundamental Laws of Thermodynamics

🔥 First Law of Thermodynamics

$$dU = \delta Q - \delta W$$ $$\Delta U = Q - W$$

Where: U = Internal Energy, Q = Heat added to system, W = Work done by system

♨️ Second Law of Thermodynamics

$$dS \geq \frac{\delta Q}{T}$$ $$\Delta S_{universe} \geq 0$$

Clausius Statement: Heat cannot flow spontaneously from cold to hot.

Kelvin-Planck Statement: No heat engine can convert all heat into work.

❄️ Third Law of Thermodynamics

$$\lim_{T \to 0} S = 0$$

Entropy of a perfect crystal at absolute zero is zero.

⚡ Fundamental Thermodynamic Relations

$$dU = TdS - PdV + \mu dN$$ $$H = U + PV$$ $$F = U - TS$$ $$G = H - TS = U + PV - TS$$

Where: H = Enthalpy, F = Helmholtz Free Energy, G = Gibbs Free Energy

⚠️ Important Work Formulas

$$W = \int P \, dV$$ $$W_{reversible} = nRT \ln\left(\frac{V_f}{V_i}\right)$$ (Isothermal Process) $$W = \frac{nR(T_f - T_i)}{1-\gamma}$$ (Adiabatic Process)

Thermodynamic Processes

Process Condition ΔU Heat (Q) Work (W)
Isothermal \(T = \text{const}\) 0 \(nRT\ln\left(\frac{V_f}{V_i}\right)\) \(nRT\ln\left(\frac{V_f}{V_i}\right)\)
Adiabatic \(Q = 0\) \(-W\) 0 \(\frac{nR(T_f - T_i)}{\ 1 - \gamma\ }\)
Isochoric \(V = \text{const}\) \(Q\) \(nC_v(T_f - T_i)\) 0
Isobaric \(P = \text{const}\) \(nC_v(T_f - T_i)\) \(nC_p(T_f - T_i)\) \(P(V_f - V_i)\)

📊 Polytropic Process

$$PV^n = \text{constant}$$ $$W = \frac{P_2V_2 - P_1V_1}{1-n} = \frac{nR(T_2 - T_1)}{1-n}$$

Special Cases:

  • n = 0: Isobaric
  • n = 1: Isothermal
  • n = γ: Adiabatic
  • n = ∞: Isochoric

🔄 Reversible vs Irreversible

Reversible Process: \(\Delta S_{universe} = 0\)

Irreversible Process: \(\Delta S_{universe} > 0\)

$$W_{lost} = T_0 \Delta S_{universe}$$

Thermodynamic Variables

System Intensive Variable Extensive Variable
Hydrostatic system Pressure, P Volume, V
Stretched wire Tension, F Length, L
Surface Surface tension, γ Area, A
Dielectric slab Electric field, E Total polarization, P
Paramagnetic rod Magnetic field, H Total magnetization, M

Equations of State

System/Law Equation
Ideal Gas \(PV = nRT\)
van der Waals \(\left(P + \frac{a}{V^2}\right)(V - b) = nRT\)
Stretched Wire \(F = k(L - L_0)\)
Dielectric Slab \(P = \left(a + \frac{b}{T}\right)E\)
Paramagnetic Material (Curie's Law) \(M = \frac{C}{T}H\)

First Law of Thermodynamics

System First Law Form
Hydrostatic system \(dU = dQ - PdV\)
Stretched wire \(dU = dQ + FdL\)
Surface \(dU = dQ + \gamma dA\)
Dielectric slab \(dU = dQ + EdP\)
Paramagnetic rod \(dU = dQ + \mu_0 H dM\)

Heat Capacity Definitions

Term/Concept Equation
Heat Capacity \(C = \frac{dQ}{dT}\)
Specific Heat Capacity \(c = \frac{1}{m}\frac{dQ}{dT}\)
Constant Volume (CV) \(C_V = \left(\frac{\partial U}{\partial T}\right)_V\)
Constant Pressure (CP) \(C_P = \left(\frac{\partial Q}{\partial T}\right)_P\)
Relation between CP & CV \(C_P - C_V = \left[\left(\frac{\partial U}{\partial V}\right)_T + P\right]V\beta\)

Thermodynamic Cycles & Heat Engines

🚂 Carnot Cycle

$$\eta_{Carnot} = 1 - \frac{T_C}{T_H} = \frac{T_H - T_C}{T_H}$$ $$\frac{Q_H}{T_H} = \frac{Q_C}{T_C}$$

Steps: Isothermal expansion → Adiabatic expansion → Isothermal compression → Adiabatic compression

⚙️ Otto Cycle

$$\eta_{Otto} = 1 - \frac{1}{r^{\gamma-1}}$$

Where: r = compression ratio = \(V_{max}/V_{min}\)

Steps: Adiabatic compression → Isochoric heating → Adiabatic expansion → Isochoric cooling

🔧 Diesel Cycle

$$\eta_{Diesel} = 1 - \frac{1}{\gamma} \cdot \frac{r_c^{\gamma} - 1}{r^{\gamma-1}(r_c - 1)}$$

Where: r = compression ratio, \(r_c\) = cutoff ratio

❄️ Refrigerators and Heat Pumps

$$COP_{ref} = \frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C} = \frac{T_C}{T_H - T_C}$$ (Carnot Refrigerator) $$COP_{HP} = \frac{Q_H}{W} = \frac{Q_H}{Q_H - Q_C} = \frac{T_H}{T_H - T_C}$$ (Carnot Heat Pump)

⚠️ Efficiency Relations

$$\eta = \frac{W_{net}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}$$ $$\eta_{any} \leq \eta_{Carnot}$$

Entropy & Free Energy

🌀 Entropy Calculations

$$dS = \frac{\delta Q_{rev}}{T}$$ $$S = k_B \ln \Omega$$ (Boltzmann's Formula) $$\Delta S = nC_v \ln\left(\frac{T_f}{T_i}\right) + nR\ln\left(\frac{V_f}{V_i}\right)$$ (Ideal Gas)

🔄 Entropy Change for Common Processes

Isothermal: \(\Delta S = nR\ln\left(\frac{V_f}{V_i}\right) = \frac{Q}{T}\)
Isobaric: \(\Delta S = nC_p\ln\left(\frac{T_f}{T_i}\right)\)
Isochoric: \(\Delta S = nC_v\ln\left(\frac{T_f}{T_i}\right)\)
Adiabatic: \(\Delta S = 0\) (reversible)
Phase Change: \(\Delta S = \frac{L}{T}\)

⚡ Maxwell Relations

$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$ $$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$ $$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$ $$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$

🎯 Free Energy Criteria

Helmholtz Free Energy (F): Minimum at equilibrium (constant T, V)

$$dF = -SdT - PdV$$ $$\Delta F = \Delta U - T\Delta S$$

Gibbs Free Energy (G): Minimum at equilibrium (constant T, P)

$$dG = -SdT + VdP$$ $$\Delta G = \Delta H - T\Delta S$$

Kinetic Theory of Gases

🎱 Ideal Gas Relations

$$PV = nRT = Nk_BT$$ $$PV^\gamma = \text{constant}$$ (Adiabatic) $$\gamma = \frac{C_p}{C_v}$$

📊 Molecular Speeds

$$v_{rms} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$ $$\bar{v} = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$$ $$v_{mp} = \sqrt{\frac{2k_BT}{m}} = \sqrt{\frac{2RT}{M}}$$

Where: \(v_{rms}\) = root mean square speed, \(\bar{v}\) = average speed, \(v_{mp}\) = most probable speed

🌡️ Internal Energy & Heat Capacities

$$U = \frac{f}{2}nRT$$ $$C_v = \frac{f}{2}R$$ $$C_p = C_v + R = \frac{f+2}{2}R$$ $$\gamma = \frac{C_p}{C_v} = \frac{f+2}{f}$$
Gas Type f (degrees of freedom) γ
Monatomic 3 5/3 ≈ 1.67
Diatomic 5 7/5 = 1.40
Polyatomic 6 4/3 ≈ 1.33

📈 Maxwell-Boltzmann Distribution

$$f(v) = 4\pi n \left(\frac{m}{2\pi k_BT}\right)^{3/2} v^2 e^{-mv^2/2k_BT}$$

Energy Distribution:

$$f(E) = \frac{2\pi n}{(\pi k_BT)^{3/2}} \sqrt{E} \, e^{-E/k_BT}$$

🔵 Real Gases - Van der Waals Equation

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

Critical Constants:

$$T_c = \frac{8a}{27Rb}, \quad P_c = \frac{a}{27b^2}, \quad V_c = 3nb$$

Constants & Reference Tables

🔢 Fundamental Constants

Gas Constant (R)

8.314 J/(mol·K)

0.08206 L·atm/(mol·K)

Boltzmann Constant (kB)

1.381 × 10-23 J/K

Avogadro's Number (NA)

6.022 × 1023 mol-1

Standard Pressure

1 atm = 101,325 Pa

1 bar = 105 Pa

🔄 Unit Conversions

Quantity Conversions
Energy 1 cal = 4.184 J, 1 eV = 1.602 × 10-19 J
Temperature T(K) = T(°C) + 273.15, T(°F) = 9T(°C)/5 + 32
Pressure 1 Torr = 133.322 Pa, 1 psi = 6,895 Pa
Volume 1 L = 10-3 m³ = 1000 cm³

💡 Exam Tips & Common Pitfalls

  • Sign Conventions: W is positive when work is done BY the system
  • Units: Always check that R has correct units for your calculation
  • Reversible Process: Maximum work is obtained in reversible processes
  • Entropy: Always increases for isolated systems (2nd Law)
  • Carnot Efficiency: Maximum possible efficiency between two temperatures
  • State Functions: U, H, S, F, G are path-independent
  • Process Functions: Q and W are path-dependent
  • Adiabatic: No heat transfer, but temperature can change
  • Isothermal: ΔU = 0 for ideal gas (U depends only on T)

📝 Quick Reference Formulas

Ideal Gas: PV = nRT
First Law: dU = δQ - δW
Carnot Efficiency: η = 1 - TC/TH
Entropy (Boltzmann): S = kB ln Ω
Gibbs Free Energy: G = H - TS
RMS Speed: vrms = √(3RT/M)